Characterization of Microvesicles Released from Human Red Blood Cells.
نویسندگان
چکیده
BACKGROUND/AIMS Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. METHODS Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. RESULTS Treatment of RBCs with 4-bromo-A23187 (positive control), lysophosphatidic acid (LPA), or phorbol-12 myristate-13 acetate (PMA) in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS) and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 mV depended on the solutions and buffers used. CONCLUSION An increase of intracellular Ca2+ or an activation of protein kinase C leads to the formation and release of MVs in human RBCs.
منابع مشابه
Microvesicle Involvement in Shiga Toxin-Associated Infection
Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thr...
متن کاملEvaluation of Effect of Plasmas Prepared from Packed Red Blood Cells at Different Weeks on Production of Nitric Oxide (NO) and Malondialdehyde (MDA) from Peripheral Blood Mononuclear Cells in Vitro
Introduction: In present study, we evaluated the effect of plasma collected from packed red blood cells (PRBCs) at various weeks after donation on peripheral blood mononuclear cells (PBMCs). Methods: In this experimental study, plasma prepared from twenty PRBCs in the first, second, fourth, and fifth weeks after donation. PBMCs were also isolated from healthy donors and treated with different c...
متن کاملEvaluation of Blood Storage Lesions in Leuko-depleted Red Blood Cell Units
Background: Red blood cells (RBCs) undergo biochemical and morphologic alterations during storage that are known as the storage lesions causing decreased RBC quality and are correlated with transfusion reactions in certain groups especially in infants and critically ill patients. Microvesicles (MVs) as one of storage lesions may be derived from various cell types and have key roles in several...
متن کاملRed blood cell vesiculation in hereditary hemolytic anemia
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively...
متن کاملMicrovesicles preparation from mesenchymal stem cells
Background: Extracellular vesicles are particles ranged from 30 nm to 5µm and subcategorized into three groups; exosomes, microvesicles and apoptotic bodies, each of which have different biological impact. Lack of a standard method for the detection and isolation of MVs has led to a challenging issue that is a worth considering. In this study, we isolated MVs from the conditioned medium o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 38 3 شماره
صفحات -
تاریخ انتشار 2016